A Low-Complexity Voice Activity Detector for Smart Hearing Protection of Hyperacusic Persons

Narimene Lezzoum, Ghyslain Gagnon and Jérémie Voix

École de technologie supérieure, 1100 Notre Dame West, Montréal (Qc) H3C 1K3 Canada

Abstract
In this paper, a Voice Activity Detector (VAD) is proposed for smart hearing protection applications where speech is to get through the hearing protector while ambient noise is to be blocked out. The VAD calculates a short-term statistical assessment of the temporal envelopes within different frequency bands. This assessment uses the Inter-Quartile Range (IQR) and reflects the dispersion of the envelopes’ magnitudes. The VAD’s decision is made using two threshold comparison rules and a hangover scheme triggered after a given number of observations. These four parameters have been optimized off-line using a genetic algorithm approach. The performance of the proposed VAD is compared to Sohn’s VAD using a database of 90 speech signals corrupted by five real-world noise environments at Signal-to-Noise ratios (SNR) varying from 0 to +10 dB. Results show that the proposed VAD performs better than Sohn’s VAD with an 85.9% (compared to 77.5%) F1 score averaged across all SNRs and also minimizes by a factor of three the mid-speech clipping rate. In addition, the evaluation of the proposed VAD’s computational cost shows that its implementation on-board a low-power low-consumption DSP is very feasible and would enable smart hearing protection for hypersensitive persons.

Index Terms: Voice activity detection, inter-quartile range, genetic algorithms, temporal envelope

1. Introduction
Hyperacusis is defined as hypersensitivity and intolerance to ordinary environmental sounds [1]. It has been mentioned in [2] that one in 10 people report such sensitivity to sound. Over time, persons with hyperacusis begin to avoid social interaction, withdraw completely from environments that were once pleasant and become socially isolated [3]. The most common treatment for this hearing disorder is desensitization by careful presentation of sounds -limited in level and progressive in time-, as well as wearing passive hearing protection devices (HPDs) during daily activities to prevent the situation from worsening until the desensitization therapy has succeeded [1].

However, wearing passive HPDs is somewhat inconvenient for these patients because HPDs not only block unwanted noise signals, but also wanted speech signals. To palliate this problem, a smart HPD i.e., an active HPD that guarantees protection while discriminating between speech and noise to allow speech signals to get through to the protected ear is being worked on. For this purpose, the integration of a Digital Signal Processor (DSP) in the traditional passive HPD is required. The smartness of this HPD lies in its capability of transmitting speech signals while protecting the ear from environmental noise.

The discrimination between speech and noise signals is known in the literature as Voice Activity Detection (VAD). Numerous VAD algorithms have been developed; some require the extraction of features such as: the periodicity [4], zero crossing rate, full and low band energy and line spectrum frequencies [5] or pitch [6]. However, the performance of these VADs degrades when the SNR decreases [7]. To palliate this problem, other VADs have been developed and require the characterization of noise depending on an estimate during noise periods such as the calculation of the a posteriori and a priori SNR [8]. Nevertheless, these VADs are sensitive to changes in the SNR [9]. Therefore, some researchers resort to learning techniques or modelling algorithms in their VAD [10], [11] and [12]. This however, leads to other problems when the intended application must operate in an embedded system with limited hardware resources.

In this paper, we propose the calculation of a short-term statistical assessment of the temporal envelope within different frequency bands. Extracting features from the temporal envelope has been widely used for hearing aids to detect the presence of speech and decide when gain should be reduced [13], [14], [15]. The VAD’s decision is made after multiple observations using two thresholds in addition to a hangover scheme to take into consideration “long time” information, knowing that speech signals are highly time-correlated [16]. Thresholds, number of observations and hangover parameters are optimized off-line using a Genetic Algorithm (GA) [17]. The VAD’s decision is set after multiple observations and using a hangover scheme to minimize false positives and mid-speech clipping knowing that for hyperacusis patients wearing smart hearing protection, perception of “short time” noise signals is unpleasant.

The paper is organised as follows. Section 2 introduces the proposed VAD algorithm. Section 3 describes the off-line parameters optimization. Section 4 presents the validation and discussions and section 5 the conclusions.

2. Proposed VAD Algorithm
Figure 1 illustrates the detailed architecture of the proposed VAD where N is the number of observations, i the frame number and m the frequency band number.

2.1. Windowing
The entire signal is first cut into frames with a Hamming window. The length of each frame is 25 ms with an 80% overlap.

2.2. Feature Extraction
2.2.1. Filter Bank
Each frame is passed into a filterbank of 16 frequency bands using -for ease on device implementation- a 4^{th} order Butterworth filter. Cut-off frequencies are described in the Bark scale [18] and lie between 20 and 3150 Hz.
2.2.2. Temporal Envelope Extraction

For each frame, the temporal envelope of each frequency band is extracted using the Hilbert Transform. Envelope extraction using the Hilbert transform involves the calculation of the analytic signal \[E(t) = \sqrt{x(t)^2 + \tilde{x}(t)^2} \] (1), where \(E(t) \) is the Hilbert envelope of \(x(t) \).

\[\tilde{x}(t) = x(t) \ast \frac{1}{\pi t} \] (2)

2.2.3. Statistical Assessment of Temporal Envelopes

The statistical assessment is the Inter-Quartile Range (IQR) and is calculated within the temporal envelopes of the various frequency bands by using the 75th percentile, or third quartile \((Q_3)\): the value below which 75% of the values in the distribution lie, and the 25th percentile, or first quartile \((Q_1)\): the value above which 25% of the values lie. The IQR is calculated as shown in equation 3.

\[\text{IQR} = Q_3 - Q_1 \] (3)

Figure 2 illustrates an example of the IQR in all frequency bands for one signal’s frame with (a): -5 dB, (b) 0 dB and (c) 5 dB SNR.

Figure 2: IQR calculated in the frequency bands of one signal’s frame with (a): -5 dB, (b) 0 dB and (c) 5 dB SNR.

2.2.4. Area under IQR Curve

The ascertainment noted from Figure 2 is confirmed by the studies conducted in [20] on the influence of noise on vowels and consonants, which concluded that when the speech signal is corrupted by noise, the first formant can be reliably detected compared to the second formant, which is heavily masked by noise in low SNRs. Based on this conclusion, we choose not to consider only one frequency band to characterize a speech signal, but rather the area under the IQR curve from the third to the ninth frequency band. This area is named \(A_1 \) and its choice is based on the frequency region containing the largest amount of speech information. The area under the IQR curve is calculated to take into consideration both spectral (first formant) and temporal (IQR) characteristics. Figure 3 illustrates \(A_1 \) for a speech signal corrupted by a ‘Car’ noise in 0 dB SNR and \(A_1 \) for noise and speech separately. Figure 3 illustrates that \(A_1 \) is typically high when a speech signal is present, whereas when only noise is present this area is low. This ascertainment has been validated on different utterances.

Figure 3: The area \(A_1 \) calculated for speech in a quiet setting, noisy setting with 0 dB SNR, and separate noise signal.

2.3. VAD’s Decision

2.3.1. Normalization

Figure 3 shows that the VADs’ decision could be performed using a decision threshold upon \(A_1 \). However, this procedure is not applicable directly on \(A_1 \) since \(A_1 \) depends on the IQR, which itself depends on the scale of the temporal envelope. This yields us to normalize the data by using two other areas under the IQR curve that reflect the noise signal.

Speech and noise signals differ in their frequency compo-
ments: noise signals have generally more energy in the lower frequencies than speech signals, which have a lower energy in these frequencies [21]. This ascertainment yields us to calculate the area A_2 under the IQR curve from the first frequency band (20-100 Hz) to the second (100-200 Hz). The choice of this area is based on the frequency region containing the most noise information and the least speech information, it has been found empirically to be the most reliable for noise assessment. In addition to the A_2 area, we added another area under the IQR curve (A_3) that characterizes high frequency noises. This additional area is calculated in the high frequency bands and represents an alternative choice in the decision.

The three areas show in our testing the same trends: when the signal’s level increases, A_1, A_2, A_3 increase and similarly, when the signal’s level decreases, A_1, A_2 and A_3 decrease. This trend leads us to calculate the ratios R_1 and R_2 (see Eq. 4 and 5), upon R_1 and R_2 the first and second decision thresholds T_1 and T_2 are determined using the genetic algorithm approach.

\begin{align}
R_1 &= \frac{A_1}{A_2} \\
R_2 &= \frac{A_1}{A_3}
\end{align}

(4)

(5)

The use of T_1 and T_2 as a decision rule eliminates the need for an adaptive decision threshold or an SNR estimator.

T_1 and T_2 must be optimized in addition to two other parameters: first, the number of observations that represents the number of consecutive frames having R_1 and R_2 higher than T_1 and T_2 respectively and after which the decision might be set to 1 (speech) and second, the hangover parameter, which represents the time after which the VAD is reset to 0.

3. Off-Line Parameters Optimization

3.1. Start of Speech Confirmation and Hangover Scheme in Smart Hearing Protection

The start of speech confirmation is defined as the number N of consecutive frames having R_1 and R_2 higher than T_1 and T_2 and after which the decision is set to 1. They have been used in Ramirez et al’s VAD [22], where it was demonstrated that taking several frames into account in the VAD improves the reliability of the decisions.

The value N cannot exceed a certain number of consecutive frames, otherwise lip-sync errors may occur. Lip sync errors are defined by the ITU [23] as the errors between lip movement and the perceived speech signal, and a lip-sync error of 40 ms was considered acceptable. Thus, the maximum number of consecutive frames after which the decision might be set to one in the proposed VAD is eight consecutive frames, which represents a delay of 40 milliseconds.

The hangover scheme or end of speech confirmation has been widely used in VADs to minimize the false rejection rate caused by the non-detection of low energy speech frames containing consonants such as fricatives and unvoiced stops.

3.2. Objective Function

To optimize the thresholds (T_1 and T_2), hangover, and number of observations, an objective function should be minimized. This function’s role is to evaluate the performance of the VAD algorithm. For this purpose, we used the F1 score measure [24]. This score combines the FPR (False Positive Rate), TPR (True Positive Rate) and FNR (False Negative Rate). Knowing that FPR, TPR, FNR are based on maximum of 100%.

\begin{align*}
F1 &= 2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}} \\
\text{precision} &= \frac{\text{TPR}}{\text{TPR} + \text{FPR}} \\
\text{recall} &= \frac{\text{TPR}}{\text{TPR} + \text{FNR}}
\end{align*}

(6)

(7)

(8)

For the smart hearing protection application, we calculated the TPR and FNR for the noisy speech signals and the FPR for the noise signals. This evaluation method focuses on the fact that once the speech signal has been detected it must be transmitted in its entirety to the Smart HPD’s wearer - possibly with a few seconds extra duration- while continuing to protect the wearer from noise when no speech signals are present.

The objective function to be minimized is shown in Equation 9:

\begin{equation}
\text{Penalty} = 1 - F1
\end{equation}

(9)

3.3. Genetic Algorithm for Off-Line Parameter Optimization

Genetic Algorithms (GAs) [17] are randomized search and optimization techniques based on the mechanisms of natural selection and natural genetics. They are used to optimize the four parameters using an optimization database. For the purposes of this application, we have used a limited samples of five speech signals corrupted by ‘Subway’ noise, with a 0 dB SNR knowing that many hyperacusis patients are exposed daily to this type of noise. The speech signals are from the TIMIT database [25] and the noise signals from the AURORA database [26], both sampled to 16 kHz. The hangover’s duration tends to vary between 50 and 250 frames which represents 0.25 to 1.25 seconds and the number of observations varies from 4 to 8 consecutive frames. The upper boundary of the hangover seems long when compared to the hangover durations used in telecommunications or speech recognition [27] and [16]. However, it was considered that this was not to be included in the objective function since it theoretically does not reduce the performance of the algorithm as it could reduce the performance of VADs for telecommunications or speech recognition. It will not affect the process but permit entire speech signal transmission without interruption.

After 10 generations, the GA reached an optimal solution with a best penalty value of 9%, which is equal to an F1 score of 91%. The optimization process gave a hangover of 250 frames and 6 consecutive frames.

4. Validation and Discussions

In the first part of this section, we present the VAD’s performance assessment and in the second part, we quantify the computational cost of the proposed VAD.

4.1. Performance Assessment

The validation database is composed of 90 speech signals corrupted by five everyday noise environments with 3 SNRs (10, 5 and 0 dB). The speech signals are from the TIMIT database and the noise signals from the AURORA database. The average length of each speech signal corrupted by noise is 3.06 seconds and 83.6% of the signal comprises speech.
The authors would like to thank Sonomax Technologies Inc. and its "Industrial Research Chair in In-ear Technologies" for its financial support.