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Abstract — This paper presents a real-time voice activity 

detection (VAD) algorithm implemented in a miniature Digital 
Signal Processor (DSP) for in-ear listening devices such as 
earphones or headphones. This system allows consumers to 
hear external speech signals such as public announcements or 
oral communication while listening to music without removing 
their listening devices. The proposed algorithm uses two 
normalized energy features that compare the energy in the 
frequency region containing speech information with the 
frequency regions typically containing noise. The extraction of 
the normalized features represents the key of the proposed VAD 
since it eliminates the need for a signal-to-noise ratio (SNR) 
estimator. The VAD's decision is made using two threshold 
comparison rules computed from the normalized features and a 
hangover scheme triggered after a given number of 
observations. The algorithm parameters, namely the frequency 
regions' boundaries, number of observations, two decision 
thresholds and hangover's duration, have been optimized off-
line using a genetic algorithm. The performance of the proposed 
VAD is compared to a benchmark algorithm in four noise 
environments and three SNRs. Results show that the average 
false positive rate (FPR) of the proposed algorithm is 4.2% and 
the average true positive rate (TPR) is 91.4 % compared to the 
benchmark algorithm which has a FPR average of 29.9 % and 
a TPR average of 79.0 %. The proposed VAD is implemented in 
hardware to validate its reliability and complexity1. 
 

Index Terms — Smart earphones, voice activity detection, 
energy based feature, real-time algorithm, digital signal 
processor. 

I. INTRODUCTION 

Nowadays, smart-phones, mp3 players, and other portable 
audio player devices are ubiquitous.  

Wearing earphones or headphones for listening to music in 
public places such as airports, airplanes, or railway stations 
causes sensory and cognitive distractions and isolates the 
wearer from the external environment. For example, in a 
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railway station when train departures are announced, earphone 
wearers may miss this announcement and consequently miss 
their train. Similarly, in an airplane, passengers must remove 
their earphones when a steward is addressing them. 

To palliate problems caused by the wearing of earphones in 
public places, several tools have been developed to enable 
consumers to hear external signals, ranging from push-to-hear 
electronic devices to dedicated wireless systems.  

Earphone manufacturers have developed systems which 
include a microphone and a push button that allows the users 
to mute the music and transmit external sounds to the ear, thus 
allowing communication without the need to remove the 
earphones. These devices are either available as external 
dangles or included directly into the headphones. Since the 
users must manually push a button, they must know that a 
spoken message is addressed, which is unsuitable in situations 
where no visual cue is available (public announcement, for 
example). 

Software tools for external signals transmission are also 
available in smart-phones. They enable consumers to hear the 
external environment while listening to the music when the 
loudness of the external environment exceeds a certain 
threshold. Although these tools let the earphone wearers 
remain aware of their external environment, they can be 
annoying since all signals (useful and not-useful) are 
transmitted to the ear whenever they reach the predetermined 
loudness threshold. 

Sophisticated wireless systems have also been developed to 
address this problem. These systems transmit the 
announcements to the wearer’s audio device via a network, 
and then play relevant announcements in the earphones [1]. 
This method requires a specific infrastructure in a given 
location, and the user cannot benefit from this technology 
where the infrastructure has not been developed. 

The present paper describes a real-time Voice Activity 
Detection (VAD) system for smart earphones that can be 
integrated to current advanced communication earpieces [2]. 
The proposed system discriminates between a speech (useful) 
signal and noise (not-useful) signal to transmit speech signals 
through the earphones while blocking noise signals. A 
miniature Digital Signal Processor (DSP) is integrated in the 
earphones for real-time speech and noise discrimination.  

Voice activity detection is commonly used in various 
speech-based applications. In voice over IP transmission and 
GSM communication, a VAD is used to encode non-speech 
segments with a lower bit rate than speech segments and thus 
reduce the transmission rate [3]. It is also widely used in 
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human/machine interaction applications [4], [5] for speech 
recognition or speaker identification and verification to reduce 
false alarm rates due to the use of noise segments in the 
recognition process. Likewise, VADs are used for noise 
reduction in hearing aids [6] and recently for smart hearing 
protection [7]. 

The performance of VADs relying solely on the extraction 
of one or several features [3], [8], [9] degrades when the 
signal-to-noise ratios (SNR) decreases [10]. To palliate this 
problem, other VADs have been developed and rely on the 
estimation of the a posteriori and a priori SNR using the 
signal first frames, assumed to contain only noise signals [11]. 
Unfortunately, these VADs become sensitive to changes in the 
SNR [12]. Learning techniques or modeling algorithms have 
also been applied to VADs [13], [14] making the VAD 
efficient but more complex and difficult to implement in a 
DSP with limited hardware resources for real-time 
applications.  

Recently, Hsu et al [15] proposed an energy-based VAD 
where the decision is made using a threshold upon the energy 
of the frequency modulation of harmonics. This VAD has 
shown its effectiveness in low SNRs and requires low 
computational resources. However its response delay makes it 
unsuitable for real-time low-latency applications.  

While a relatively low-complexity VAD has been proposed 
based on the inter-quartile range statistic feature [7], the 
current approach proposes improvements, using simpler 
energy-based features, for an efficient implementation in a 
low-power DSP. 

The proposed VAD is implemented in a miniature DSP for 
smart earphones or headphones applications. The proposed 
solution can be integrated into active noise control 
headphones, which are already equipped with external 
microphone and other electronics. It can even be retrofitted to 
traditional headphones or earphones by integrating a miniature 
external microphone and DSP. 

This paper is organized as follows: Section II presents the 
proposed smart earphones and their operating principle. 
Section III describes the proposed VAD algorithm. In 
Section IV, the parameters used in the VAD’s decision are 
defined and their off-line optimization using a genetic 
algorithm is performed. Section V presents the validation of 
the proposed VAD, and Section VI describes its 
implementation in a low-power DSP and its real-time 
validation in the embedded system. Finally, Section VII 
concludes the paper. 

II. THE SMART EARPHONE 

Smart earphones are traditional earphones, in which a field-
programmable electronic hardware is embedded (Fig.1). To 
capture signals, a miniature external microphone is connected 
to the audio input of an ultra-low power DSP. The DSP output 
is connected to a miniature loudspeaker to transmit the desired 
signals to the ear [16].  

The main task of the proposed system is the 
discrimination between speech and noise signals to allow 

speech signals to get through the earphones while blocking 
noise signals when speech is absent to enable the wearer to 
listen to music. Fig.2 illustrates the operating principle of 
the whole system. 

 
Fig. 1. The hardware resources embedded in the smart earphones. 

 
 

 
Fig. 2. The selective operating principle of the system. 

 

III. THE PROPOSED VAD ALGORITHM  

A study conducted by Parikh et al [17] on the influence of 
noise on vowels and consonants concluded that when the 
speech signal is corrupted by noise, the first formant can be 
reliably detected compared to the second formant, which is 
heavily masked by noise in low SNR (0 dB). Based on these 
findings, we propose the use of an energy feature which is 
extracted from the frequency region containing the first 
formant for speech characterization. Thereafter, this feature is 
normalized using two noise features extracted from the 
frequency regions containing typical noise information. The 
normalization of the energy feature eliminates the need for an 
SNR estimator. 

The VAD's decision is made after multiple observations 
using two decision thresholds, determined from the 
normalized energy features in addition to a hangover scheme 
to consider the “long time” information, knowing that the 
speech signal is highly time-correlated [18]. The value of the 
two thresholds, the frequency bounds, the number of 
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observations and the hangover parameters are optimized off-
line using a genetic algorithm. The optimization increases the 
performance of the proposed VAD by maximizing the F1 
score [19]. 

Fig.3 illustrates the detailed architecture of the proposed 
VAD algorithm. The signal is first time-windowed into i 
frames. Features are extracted and the decision D(i) is made 
after N observations based on two thresholds and a hangover 
scheme.  
 

 
Fig. 3 Block diagram of the proposed VAD algorithm. 

 

A. Windowing 

The entire signal is cut into frames using a Hamming 
window. The length of each frame is 25 ms with 80 % 
overlap. 

B. Feature Extraction 

1) Filter Bank 
The incoming signal is filtered into M=3 frequency bands 

using 4th order Butterworth filters. Cut-off frequencies of the 3 
bands (15-153 Hz, 153-1323 Hz, 1323-1944 Hz) have been 
optimized off-line using a Genetic algorithm (see section IV). 
 

2) Energy-based Features  
Parikh et al [17] concluded that when the speech signal is 

corrupted by noise; the first formant can be reliably detected. 
Based on the conclusions of this study, the energy of each 
frequency band is calculated.  

Fig.4 illustrates an example of the energy in the three 
frequency bands for one speech frame produced by a male 
speaker corrupted by car noise with 10, 5 and 0  dB SNRs. A1, 
A2, A3 denote the energy in the first, second, and third 
frequency bands respectively.  One can see that in the second 

frequency band, which contains the first formant of the speech 
frame (a voiced phoneme), the energy of the speech is 
significantly higher than the energy of the noise in this band, 
whereas the energy of the noise in the first band (especially in 
0 dB SNR) is higher for noise than speech. 

 
3) Normalization 

While Fig.5 shows that A2 is a reliable indicator of the 
presence of speech, it cannot be used directly with a decision 
threshold in the VAD because it is dependent on the input 
signal level. Thus, the following normalized ratios, which 
increase the VAD's performance by taking advantage of the 
different frequency content of speech and noise (A1 and A3), 
are proposed: 
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Fig. 4 Energy in three frequency bands for one signal frame with (a) 10 
dB, (b) 5 dB, and (c) 0 dB SNR. 

 

 
Fig. 5 A2 in speech, noise, and a noisy speech signal with 0 dB SNR, in 
addition to the hand-labeled decision on clean speech. 

R1 is normalized by the low-frequency components, 
knowing that noise signals generally have more energy in the 
lower frequencies than speech signals [20]. R2 is normalized 
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by the high-frequency components that characterize high 
frequency noise signals. 

The VAD's decision is based on ratios R1 and R2, thus 
eliminating the need for an SNR estimator. 

 

C. VAD’s Decision 

1) The decision thresholds 
Two decision thresholds T1 and T2 are fixed upon the ratios 

R1 and R2.  
The VAD's decision is made after N observations: 
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with N being the number of consecutive observations, i the 
frame number and D(i) the decision in the current frame. 

 
2) Start and End of Speech Confirmation Parameters 

The VAD's decision is made after multiple observations 
(start of speech confirmation parameter). These observations 
are defined by the number of consecutive frames having ratios 
R1 and R2 higher than thresholds T1 and T2 respectively and 
after which the decision is to be set to 1 (speech). 
Ramirez et al. [21] demonstrated that taking several frames 
into account in the VAD improves the reliability of its 
decision.  

In the proposed VAD, the number of consecutive frames 
should not exceed 8 frames to not exceed a delay of 40 ms. 

Hangover schemes (end of speech confirmation parameter) 
have been widely used in VADs to reduce the false rejection 
rate attributable to the non-detection of low energy speech 
frames containing consonants such as fricatives and unvoiced 
stops [11] [18]. 

In the adaptive Multi-Rate (AMR) VAD [9], the hangover 
was set to 2 seconds if the signal is of a complex nature. 

 

IV. OFF-LINE PARAMETER OPTIMIZATION 

The choice of the two decision thresholds T1 and T2 
depends on the desired specificity and sensitivity of the 
VAD. High decision thresholds make the VAD more specific 
than sensitive, which minimizes both the False Positive Rate 
(FPR) and True Positive Rate (TPR). Low decision 
thresholds make the VAD more sensitive by maximizing the 
TPR and FPR. 

The two decision thresholds T1 and T2, the number of 
consecutive frames (start of speech confirmation), and the 
hangover (end of speech confirmation), in addition to the 
frequency bands’ boundaries are optimized off-line using a 
genetic algorithm approach by maximizing an objective 
function. 

A. Objective Function 

In the literature, VAD performance evaluation can be 
performed using various metrics [10]. Nevertheless, solving an 
optimization problem requires the use of one metric reflecting 

the entire performance of the VAD algorithm. For this 
purpose, the F1 score is used as the objective function [18]:  
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The F1 score combines the TPR, FPR and False Negative 

Rate (FNR). It reflects the VAD’s accuracy by considering its 
precision and recall.  

In VAD algorithms, TPR, FPR and FNR are respectively: 
the ratio of speech frames classified as speech, the ratio of 
noise frames classified as speech, and the ratio of speech 
frames classified as noise. In the existing VAD algorithms, 
these rates are calculated in noisy speech signals to distinguish 
between speech and noise frames. However, for a smart 
earphone application, the TPR and FNR are calculated for 
noisy speech signals and the FPR for noise signals. This 
evaluation method focuses on the fact that once the speech 
frames have been detected, the detection of the next non-
speech frames does not have any detrimental effect on the 
performance of the proposed VAD. Whereas when no speech 
signal is present, the detection of noise frames and their 
transmission to the protected ear is significantly detrimental 
on the performance of the proposed VAD. 

 

B. Audio Signals used for the Off-line Optimization 

Off-line parameters optimization is conducted to maximize 
the F1 score, using a small number of noisy speech signals. In 
the envisioned application, noise signals typical of everyday 
environments are to be used. Thus 20 speech signals (14 
speech signals produced by male speakers and 6 speech 
signals produced by female speakers) from the TIMIT 
database [22] corrupted by “Airport” noise recorded in real 
world environment with 5 dB SNR are used. Speech and noise 
were artificially mixed together with 5 dB SNR. 

The TIMIT database was chosen for the envisioned 
application because the speech signals in this database are not 
altered by filters such as the ITU MIRS or ITU G.712, that 
tend to consider the realistic frequency characteristics of 
terminals and equipment in the telecommunication area [23]. 

 

C. Genetic Algorithm for Off-Line Parameters 
Optimization 

Genetic algorithms [24] are randomized search and 
optimization techniques based on the mechanism of natural 
selection and natural genetics. They are robust and efficient, 
they adapt to a wide variety of environments and they 
produce a near optimal solution when solving an 
optimization problem. 



N. Lezzoum et al.: Voice Activity Detection System for Smart Earphones  741 

The genetic algorithms are used to optimize the frequency 
bands’ boundaries, the hangover, the number of consecutive 
observations, and the decision thresholds. 

In the optimization process, the lower and upper frequency 
bounds variations for the three band-pass filters are illustrated 
in Table I. The lower bound of the second and third frequency 
bands correspond to the upper bound of the first and second 
frequency bands respectively.  

 
TABLE I 

FREQUENCY BANDS’ LOWER AND UPPER BOUNDS FOR THE 

OPTIMIZATION PROCESS 

Bounds Lower bound (Hz)  Upper bound (Hz) 

1 10 20 

2 50 250 

3 250 1500 

4 1500 6000 

 
The hangover varies from 50 to 300 frames with a step of 

one frame (0.25 to 1.5 second). The number of observations 
varies from 4 to 8 consecutive frames, which is equivalent to a 
decision delay varying from 20 to 40 ms.  

After 10 generations, the genetic algorithm reached an 
optimal solution with an F1 score of 98.5 %. Fig.6 shows a 
plot of the function’s best and mean penalty values in each 
generation with each generation being composed of 40 
individuals. The optimization process gave a hangover value 
of Hg=1.26 seconds and a number of consecutive frames N=7. 
The optimized cut-off frequencies for the three band-pass 
filters are: [15, 153, 1323, 1944] Hz.  

These parameters are then used for the decision-making and 
the validation of the proposed VAD algorithm using a 
validation database. 

 

Fig. 6 Penalty values (1-F1) of the optimization process using Genetic 
Algorithm. 
 

V. EXPERIMENTS AND VALIDATION  

A. Validation database 

The validation database is composed of 10 sentences 
produced by 630 speakers (439 male speakers and 191 female 

speakers) from the TIMIT database [22]. Signals are sampled 
at 8 kHz. All 10 sentences are concatenated into one signal. 

Noisy speech signals were created by adding the same noise 
at three SNRs (10, 5, and 0 dB) to each concatenated speech 
signal.  

Four noise signals obtained from real world recordings were 
used. These noises are representative of everyday 
environments to which consumers may be exposed to: 

 
 Car: this environment tends to mimic the noise of 

the wind perceived by car passengers with opened 
windows. 

 Airport: this noise was recorded in the hall of an 
airport, with talking crowds and baggage trolleys 
passing by. 

 Hammer: this noise contains transient noises. It is 
used to mimic some scenarios such as renovations 
in the neighborhood, or constructions in the street. 

 Train: this noise was recorded near a railway with   
sounds of trains passing by. 

B. Performance Evaluation 

The performance evaluation is conducted using the F1 
score, in addition to the TPR and FPR. The proposed 
algorithm is compared to Sohn's VAD [11] which uses the 
first signal’s frames to estimate the a posteriori and the a 
priori SNR to make the decision. 

Fig.7 illustrates the F1 score results of both algorithms in all 
noise conditions. As it can be seen in this figure, the F1 score 
of the proposed algorithm outperforms the F1 score of Sohn’s 
algorithm in all noise environments and SNRs. 

 

 
Fig. 7 F1 scores of Sohn’s and the proposed VAD in four noise 
environments with 10, 5, and 0 dB SNR. 
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TABLE II 
PERFORMANCE EVALUATION OF THE PROPOSED AND SOHN’S VADS IN 

FOUR NOISE ENVIRONMENTS AND THREE SNRS. 
Noise 

Environment 
PROPOSED VAD 

(%) 
Sohn VAD  

(%) 
Noise SNR TPR FPR TPR FPR 

 10 dB 97.6 0 87.5 20.9 
Car 5 dB 91.3 0 76.1 20.9 

 0 dB 73.4 0 60.2 20.9 

 10 dB 98.4 0 85.5 14.9 
Airport 5 dB 97.0 0 72.9 14.9 

 0 dB 88.4 0 55.6 14.9 

 10 dB 98.7 0 91.7 50.2 
Hammer 5 dB 98.4 0 85.3 50.2 

 0 dB 96.7 0 77.6 50.2 
 
Train 

10 dB 97.7 16.8 92.7 33.9 
5 dB 91.1 16.8 86.4 33.9 
0 dB 68.4 16.8 76.5 33.9 

Average Average 91.4 4.2 79.0 29.9 

 
 

In applications such as the smart earphones (to 
simultaneously enable the wearer to listen to music and 
transmit speech signals when present), the less desirable 
situation is the detection of short-time noise. This situation 
occurs when the false positive rate is high. Table II presents 
the true positive rate and false positive rate for the two VADs. 

The FPR average of the proposed VAD is 4.2 % compared 
to Sohn's VAD which has a FPR average of 29.9 %. The same 
FPR is found in the three SNRs of each noise since both 
VADs are insensitive to the level of the incoming signal. 

Furthermore, the TPR of the proposed algorithm is higher 
than the TPR of Sohn's algorithm in all noise environments in 
the range of 5 and 10 dB SNR. This is due to the hangover 
scheme presented previously, which permits the detection of 
almost all the speech frames without interruptions or mid-
speech clipping. 

VI. HARDWARE IMPLEMENTATION 

A. DSP Overview 

The DSP used for the implementation of the VAD is a 
stream-oriented DSP core provided in a small 32-lead, 5 mm x 
5 mm package. The Analog to Digital Converter (ADC) and 
the Digital to Analog Converter (DAC) are high quality 24 bit 
stereo audio converters, and can operate at sampling 
frequencies ranging from 8 kHz to 96 kHz. The DSP core 
consist of a simple multiply-accumulate (MAC) unit with a 
data source and a coefficient source. Three RAMs are 
encompassed in the address space of the DSP: the program 
RAM, the coefficient RAM, and the data RAM.  

The program RAM governs the execution of the 
instructions in the core, and cannot exceed 1024 instructions 
per audio frame. The parameter RAM stores the initial 
coefficients of the program and cannot exceed 1024 
coefficients, while the data RAM stores audio data-words for 
processing in addition to some run-time parameters. The data 
RAM is divided into two memory addressing types: modulo 
and non-modulo memories. Each of the modulo and non- 
modulo data RAM offer 4096 memory words.  

B. Hardware VAD Implementation 

The Auditory Research Platform (ARP) [25] integrates the 
DSP in addition to other associated electronics such as audio 
inputs, audio outputs, and battery. It is used to implement the 
proposed VAD in real-time. Fig.8 illustrates the ARP platform 
with two earpieces, in each earpiece an external miniature 
microphone and an internal miniature loudspeaker are 
integrated for external sound acquisition and VAD’s decision 
transmission respectively.  

 

 
Fig. 8 The auditory research platform in which the VAD is implemented 
for real-time processing connected to two earpieces for audio signal 
acquisition and VAD’s decision transmission. 

 
The hardware VAD implementation is made following the 

steps described in Section III.  
The resulting number of instructions per audio frame is 890, 

which is equivalent to a rate of 87 % from the entire program 
RAM. The data RAM used by the VAD is 346 (8 % from the 
entire modulo data RAM, and 0 % from the non-modulo data 
RAM), while the coefficient RAM used is 240 (23 % of the 
coefficient RAM). 

 

C. VAD real-time tests and Validation 

The real-time validation of the proposed algorithm is 
performed using some of the noisy audio samples used in the 
first validation process presented in section V.   

For this purpose, the audio input of the ARP was connected 
to the audio output of a computer in which the noisy signals 
were playing, while the output of the VAD’s decision was 
saved in the computer to compare it with the result of the first 
validation presented in section V. 

Fig.9 illustrates an example of the comparison between the 
results of the VAD before its hardware implementation and 
the VAD implemented in the DSP. This comparison is made 
using a signal composed of 3 ms of airport noise, 3 ms of 
speech corrupted by airport signal with 5 dB SNR, and 3 ms of 
airport noise signal. The decision of the VAD in simulation 
and its hardware implementation are equivalent. 
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Fig. 9 Comparison between the VAD decision on the computer and the 
real-time VAD decision obtained from the output of the DSP. 

VII. DISCUSSIONS AND CONCLUSIONS 
In this paper, a robust and yet simple real time VAD for smart 

earphones is presented. This VAD uses an energy-based feature for 
the characterization of speech and noise signals. The speech and 
noise characteristics are thereafter normalized and two decision 
thresholds are determined. The decision is made after multiple 
observations and triggers a hangover scheme.  

The algorithm parameters are optimized off-line using a genetic 
algorithm by maximizing the F1 score which represents the global 
performance of the VAD. The parameters optimization is 
performed using 20 speech signals corrupted by airport noise with 
5 dB SNR.  

The first experiment for the validation of the proposed VAD was 
conducted using 10 sentences produced by 439 male speakers and 
191 female speakers corrupted by four noise environments. These 
experiments showed that the proposed VAD is more efficient than 
a benchmark VAD. Coupling multiple observations and the 
hangover scheme in the decision process shows that the proposed 
VAD detects almost all speech signals without interruption since 
the true positive rate average is 91.4 %. The entire VAD system 
was validated for the smart earphones application. The proposed 
VAD was implemented in a miniature low-power DSP integrated 
in a research platform in which the audio inputs, battery, and other 
electronics were selected for real-time implementation. The 
hardware resources show that other tasks can be combined to the 
VAD such as a low complexity on-line parameters optimization 
algorithm to allow to the VAD to adapt for each noise environment 
in which the smart earphones are used. 
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